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Abstract: Molecular similarity concepts based on chemical graph theory algorithms are used to define metrics of molecular
similarity ranging from unity (identical) to zero (completely dissimilar). These concepts are tested by analysis of the molecular
structures of 47 steroids that bind to human corticosteroid binding globulin. The methodology has very modest computational
demands, and it makes use of no physical-chemical data for independent variables other than the information contained in
the customary drawings that represent molecular structure. The procedure begins with a transformation of a molecular structure
into a canonically ordered symbolic matrix that is unique for each molecule up to and including stereochemical elements. Molecular
similarities are then obtained by comparisons of the ordered elements of the symbolic matrices, and the molecular similarity
indices are used as independent variables in multilinear regression analyses to correlate the binding data. Good correlations
are obtained with reasonable numbers of similarity parameters. The results are compared with those from a more conventional
analysis that uses the presence or absence of substituents and structural modifications as independent variables, and the predictive

capabilities of both procedures are evaluated.

Introduction

Two distinct but complementary approaches have been de-
veloped over the past several years to deal with problems involving
the relationships of molecular structure to physical, chemical, or
biological properties. The widely used QSAR (quantitative
structure-activity relationships) procedures normally express a
molecular structure by a large set of experimental and /or theo-
retical numerical parameters and seek correlations of, for example,
biological properties using factor and cluster analysis or multilinear
regression techniques.!® The second approach attempts to model
the same properties by using numerical or symbolic descriptors
that can be derived solely from the molecular structure as rep-
resented by the molecular drawing or graph.>'¢ In this latter
case, several methodologies have been developed to obtain
quantitative measures of molecular similarity. In principle, these
similarity terms or indices, perhaps expressed relative to the most
active compound in a data set, can be used as independent variables
in a QSAR analysis. This possibility, some applications, and
historical perspectives are presented in a recent edited volume of
review articles on the molecular similarity concept.!”

In previous work, we implemented and tested several simple
procedures to specify molecular structure and to quantify mo-
lecular similarity.!®2* In the initial work, several definitions were
devised and compared for a small group of aliphatic alcohols.2%2!
This was followed by an application to correlate the carcinogenic
potencies of a small set (16 compounds) of polycyclic benzenoid
aromatic hydrocarbons.2? In the present work, we consider a larger
and structurally more diverse group of 47 steroid molecules, where
the structure-dependent property of interest is the binding affinity
to human corticosteroid binding globulin (CBG). The binding
affinity data, obtained and previously analyzed by Mickelson et
al.,? are given in Table I. One notes that the binding constants
cover a range of 4.5 powers of 10 or almost 6 kcal in the AG®
for binding.

Procedures

Molecular Graphs and Molecular Symbolic Matrices. The essential
connectivities and three-dimensional aspects of molecules are normally
represented by the conventional drawings called “constitutional formulas”
or “chemical structures”.25 The labeled molecular graph is an abstract
but more explicit realization of the structural drawing in which the
labeled vertices of the graph denote atoms or groups of atoms and the
labeled graph edges symbolize chemical bonds. We use standard atomic
symbols for the atoms, and the lower case letters s, d, t, a, and h are used
to designate single, double, triple, aromatic, and hydrogen bonds, re-
spectively.'®1% Finally, relevant, stereochemical aspects of the molecular

*Presented at the 199th National Meeting of the American Chemical
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structure are identified by adding a slash (/) to the atom or bond labels
of the graph followed by conventional stereochemical notations.?!

The molecular graph vertex labels and the bond symbols also define,
respectively, the diagonal and off-diagonal elements of a symmetric
square matrix. This symbolic matrix provides an alternate and com-
pletely equivalent representation of the molecular structure. The com-
puter programs used in this work to manipulate molecular structures
require the symbolic matrix for each compound under consideration. Of
course, the order of the rows and columns of a molecular matrix depends
on the order of the numbering of the vertices of the graph, and the
numerical evaluations of similarity to be discussed also depend upon this
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Table I. Binding Affinity Constants of CBG with Steroids

107K, In
no. steroid name My (107K
1 118,17,21-trihydroxy-4-pregnene-3,20-dione 71 4.263
2 14a,17,21-trihydroxy-4-pregnene-3,20-dione 0.7 -0.357
3 118,17,21-trihydroxy-1,4-pregnadiene-3,20-dione 37 3.611
4 118,17,21-trihydroxy-2a-methyl-4-pregnene- 60 4.094
3,20-dione
5 118,17.21-trihydroxy-2a-methyl-9a-fluoro-4- 0.17 -1.772
pregnene-3,20-dione
6 2l-acetoxy-118,17-dihydroxy-4-pregnene-3,20- 42 3.738
dione
7 17,21-dihydroxy-4-pregnene-3,1 1,20-trione 5 1.609
8 118,17,20a,21-tetrahydroxy-4-pregnen-3-one 1.7 0.531
9 118,17,208,21-tetrahydroxy-4-pregnen-3-one 0.64 0.446
10 1la,21-dihydroxy-4-pregnene-3,20-dione 14 2.639
11 118,21-dihydroxy-4-pregnene-3,20-dione 96 4.564
12 16a,17-dihydroxy-4-pregnene-3,20-dione 0.7 -0.357
13 17,21-dihydroxy-4-pregnene-3,20-dione 64 4159
14 118,21-dihydroxy-58-pregnane-3,20-dione 5 1.609
15 2a-hydroxy-4-pregnene-3,20-dione 27 3.296
16 6a-hydroxy-4-pregnene-3,20-dione 1.4 0.336
17  6B-hydroxy-4-pregnene-3,20-dione 0.31 -1.171
18 |la-hydroxy-4-pregnene-3,20-dione 10 2.303
19 16a-hydroxy-4-pregnene-3,20-dione 1.0 0.000
20 17-hydroxy-4-pregnene-3,20-dione 63 4.143
21 |2a-hydroxy-58-pregnane-3,20-dione 0.10 -2.303
22 |7-acetoxy-4-pregnene-3,20-dione 0.08 -2.526
23  |7-caproxy-4-pregnene-3,20-dione 0.0043 -5.449
24 2l-hydroxy-4-pregnene-3,20-dione 68 4219
25 17-hydroxy-6a-methyl-4-pregnene-3,20-dione 2.6 0.956
26 17-hydroxy-16a-methyl-4-pregnene-3,20-dione 4.9 1.589
27 4-pregnene-3,11,20-trione 3.7 1.308
28 4-pregnene-3,20-dione 59 4.078
29 5-pregnene-3,20-dione 13 2.565
30 Sa-pregnane-3,20-dione 23 0.833
31 5B-pregnane-3,20-dione 4.2 1.435
32 38-hydroxy-5-pregnen-20-one 0.05 -2.996
33 3a-hydroxy-58-pregnan-20-one 0.23 -1.470
34 2a-methyl-4-pregnene-3,20-dione 34 3.526
35 6a-methyl-4-pregnene-3,20-dione 7.1 1.960
36 16a-methyl-4-pregnene-3,20-dione 11 2.398
37 19-nor-4-pregnene-3,20-dione 5 1.609
38 17-hydroxy-4-pregnen-3-one 0.6 -0.511
39 Sa-pregnan-3-one 0.0025 -5.991
40 18,11-hemiacetal of 0.8 -0.223

118,21-dihydroxy-3,20-dioxo-4-pregnen-18-al

41 9a-fluoro-16a-methyl-118,17,21-trihydroxy-1,4-  0.039  -3.244
pregnadiene-3,20-dione
42 1 7.(;2 1-dimethyl-19-norpregna-4,9-diene-3,20- 0.5 -0.693
ione
43 178,19-dihydroxy-4-androsten-3-one 0.5 -0.693
44 17B-hydroxy-4-androsten-3-one 5 1.609
45 17B-acetoxy-4-androsten-3-one 1.5 0.405
46 178-hydroxy-4-estren-3-one 0.5 -0.693
47 3,178-dihydroxy-1,3,5(10)-estratriene 0.008 —4.828

factor. A standard numbering of the molecular structure is thus required
as described in the next subsection.

Canonical Numbering and Unique Linear Molecular Notations. Ex-
plicit rules and algorithms have been given previously for several types
of canonical numbering systems, each of which gives rise to a unique
numbering of the vertices of a molecular graph, and hence a unique
arrangement of the rows and columns of the corresponding symbolic
molecular matrix.'®1%2 The basic algorithmic numbering tool used in
the present work is called extended connectivity.!® The extended con-
nectivity number of a graph vertex can generally be assigned in an it-
erative process by starting with the vertex degrees and then summing the
numbers already assigned to the self-same vertex with those of adjacent
vertices in each iteration. It is, therefore, possible to obtain this hier-
archal ordering by hand!®!® or by making use of the appropriate com-
puter programs. One finds that high connectivity and centrality in the
molecular graph are the main factors giving priority in this numbering
system. The extended connectivity numbering system along with the
conventional numbering of steroidal systems are illustrated in Figure |
for progesterone (28 in Table I).

The matrix that results from the hierarchal numbering can be recast
into a linear notation format (termed LN1).*® The caption to Figure |
gives the progesterone LN1 notation, and one notes that the notation fully
represents the structure since either the matrix or the molecular graph
can be recovered starting from the LN 1 string of symbols. The inverse
of the LN numbering results in a linear notation (INVLN1) which gives
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Figure 1. Conventional (A) and LN1 notation (B) numbering for pro-
gesterone. LN notation: (C)-03s-06s-08s-17s-(C)-04s-07s-12s-19s-
(CH/pB)-055-09s-(CH/3)-05s-10s-(CH/a)-13s-(CH/8)-1 ls-155-(C)-
14s-16d-(CH2)-10s-(CH2)-11s-(CH2)-(CH2)-(CH2)-20s-(CH2)-14s-
(CH2)-(C)-21s-22d-(CH)-18s-(CH3/a)-(C)-20s-23d-(CH3 /)~
(CH2)-(CH3)-(0)-(0). TNI notation: (Cssss)-(Cssss)-(CH/Bsss)-
(CH/Bsss)-(CH/ asss)-(CH/Bsss)-(Cssd)-(CH2ss)-(CH2ss)-(CH2ss)-
(CH2ss)-(CH2ss)-(CH2ss)-(CH2ss)-(Cssd)-(CH2ss)-(CH3/aS)-
(Cssd)-(CH3/as)-(CH2ss)-(CH3s)-(0d)-(0d).

priority to atoms or groups on the periphery of a molecular structure (not
illustrated). Finally, shorter notational forms (TN! in Figure | or
INVTNI1) can be obtained by removing atom locants and coalescing
atom symbols with the symbols of attached bonds. These shorter nota-
tional forms are simply lists of augmented atom descriptors ordered
according to the extended connectivity numbering system.

Both the LN and TN notations are unique for all of the compounds
investigated in the present paper. However, some topological structural
information is suppressed in obtaining the TN-type notations, and it is
possible to draw pairs of small isomeric molecules that would possess
identical TN notations.

Similarity Indices. Our methodology for obtaining a quantifiable
correlation of a physical, chemical, or biochemical property with mo-
lecular structure requires two main steps: the first is to obtain metrics
of molecular similarity (similarity indices), and the second to employ
statistical techniques to find valid correlations of the indices with the
measured values of the property. We make the basic assumption that
the overall intrinsic similarity between the linear notations for two mo-
lecular structures is a gauge for the actual molecular similarity, and we
calculate the similarity of the linear notations by standard text com-
parison computer procedures.2-® The assumptions bear obvious rela-
tionships to those made by previous investigators who used the presence
of particular sequences contained within linear molecular codes to cor-
relate with properties.’® The present work differs in that we assess the
pairwise homologies of two entire molecular codes in order to define the
pairwise molecular similarity.

In a previous application?® we designated an optimal alignment of a
pair cf molecular notations by drawing the maximum number of non-
crossing lincs between corresponding elements. After counting the
number of insertions and deletions (indels) required to convert one linear
notation into the other while preserving the alignment, the similarity (S)
could be computed as unity minus the number of indels divided by the
total number of terms in the two notations.

S;; =1 - (indels) /(N; + N)) )

This definition of a similarity index, which gives values that range
from unity (identical molecules) to zero (completely different com-
pounds), is simple and rational. Many other options to calculate simi-
larity are possible; for example, our computer programs can require that

(26) Sankoff, E. Proc. Nat. Acad. Sci. 1972, 69, 4.

(27) Wong, A. K. C,; Reinchert, T. A.; Cohen, D. N.; Aygun, B. O.
Comput. Biol. Med. 1974, 4, 43.

(28) Sankoff, D., Kruskal, J. B., Eds. Time Warps, String Edits, and
Macromolecules; The Theory and Practice of Sequence Comparison; Addi-
son-Wesley: Reading, MA, 1983.

(29) Waterman, M. S. Bull. Math. Biol. 1984, 46, 473.

(30) An early example using Wiswesser line notation is the work of Ad-
amson, W. A.; Bawden, D. J. Chem. Inf. Comput. Sci. 1975, 15, 215. Several
studies by Klopman and co-workers comprise additional recent examples. For
;%fgrences see: Klopman, G.; Raychaudhury, C. J. Comput. Chem. 1988, 9,
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Table II. Linear Correlations of Similarity Indices with CBG
Binding Data

similarity correln no. of std
type coeff R? param error
LNI1 0.864 0.747 7 1.456
LN1 0.928 0.861 16 1.231
INVLNI 0.903 0.815 14 1.373
INVLNI 0.947 0.897 25 1.265
TNI 0.893 0.797 8 1.322
TNI 0.953 0.908 15 0.999
INVTNI 0.892 0.795 9 1.448
INVTNI 0.952 0.908 20 1.086

long homologous sequence of terms receive higher weights in calculating
similarity than the same number of terms not in sequence. Thus, a
corresponding sequence of terms of length / can be given a weight equal
to /(I +1)/2, and the calculated similarity index for a pair of notations
(molecules) is adjusted accordingly. However, only results using the
simpler definition will be reported here.

Statistical Procedures. The definition of similarity given in eq | was
applied to the structures of all the compounds listed in Table I. Recursive
versions of the computer programs allowed the construction of four 47
X 47 similarity matrices, one matrix for each type of linear notation
(LN1, INVLN], TNI, and INVTN1). A column in any of these ma-
trices represents the calculated similarities of a single compound to all
of the other compounds in the data set. The calculated pairwise simi-
larities range from 0.314 to 0.987 in the case of the LN I-type notations
and from 0.115 to 0.958 for the TN 1-type notations. The actual simi-
larity matrices and code for the various computer programs are available
from us upon request.

The relationship between molecular similarities (S) and the CBG
binding constants is assumed to have the following multilinear form

In (10_7K’) =a + alsl + 02S2 + ..+ (147S47 (2)

where several of the g; coefficients of the independent S; variables are
expected to have statistically insignificant values. All similarity terms
were entered into a potential model correlation equation (eq 2), and the
individual terms were screened for inclusion in a final regression equation
using a standard stepwise multivariate linear regression analysis. The
forward entry method was used, coupled with the backward elimination
procedure. The values of the statistical options controlling the criteria
for inclusion of independent variables were those recommended on the
basis of Monte Carlo studies of regression models.? Also, during the
course of this work, a decision was made to critically evaluate model
equations only if the number of compounds exceeded the number of
included independent variables by at least a factor of three.

Tests of Prediction Capabilities. If one accepts the implicit assumption
that molecular structure and activity are related, the above procedures
must be expected to provide some degree of reasonable correlations of
the CBG binding data. However, additional tests are required in order
to determine the actual predictive value of the above methods, and per-
haps to assess the possibility that the correlations are due to chance. The
main test procedure used in this work was cross—validation, which in-
volved the following steps: (a) the omission of each compound and its
CBG binding constant, in turn, from the database; (b) the evaluation of
new regression equations for each of the 47 new data sets; and (c) the
calculation of the CBG activity for each steroid using the correlation
equation obtained from the data set in which its activity was omitted.
Finally, a linear regression of this leave-one-out set of calculated CBG
binding values against the experimental values gave regression parame-
ters that allowed a judgement of true predictive capabilities.

Results and Discussion

The characteristic features of the multilinear relationships
between similarity parameters, defined as outlined in the previous
section, and the steroid—-CBG binding constants (Table I) are
summarized in Table II. We list the results for two correlations
for each type of similarity definition if allowed by the statistical
criteria, one at the level where ca. 80% of the variance in the
binding data is correlated and the other at the 90% level (R2 =
0.8 and 0.9, respectively).

In general, all of the results listed in Table II are comparable
and could be characterized as reasonable rectifications of the
binding data. For example, an acceptable small number of the

(31) Bendel, R. B.; Afifi, A. A. J. Am. Stat. Assoc. 1977, 72, 46.
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Figure 2. TN similarity regression model (R? = 0.80). The closed

circles indicate compounds whose similarity terms define the model.
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Figure 3. TN similarity regression model (R? = 0.90). The closed
circles indicate compounds whose similarity terms define the model.

independent similarity parameters are required for the 80% level
correlations in each case. However, even though the overall results
are somewhat similar, the TN1 correlations incorporate the
smallest number of parameters necessary to reach the chosen levels
of correlation, and also correspond to our chosen levels for critical
evaluation. Therefore, rather than discuss each one of the cor-
relations summarized in Table II, only the details of the TN1 case
will be presented.

We will also examine a previously suggested approach to
modeling the same data which is based on estimating the con-
tributions of specific polar and nonpolar groups, along with other
structural changes, to the free energy of CBG binding.?* This
procedure, which we will elaborate and term the “functional group
model”, uses the presence or absence of functional groups (rep-
resented by the variables unity or zero, respectively) as the in-
dependent parameters. Finally, we will compare the results of
the more abstract similarity analysis with the functional group
approach and attempt to assess the advantages and relative
suitabilities of procedures of both types.

TN1 Similarity. The TN1 notation system uses extended
connectivity to establish the order of the terms in the linear
descriptor of a molecule. There is one term for each atom or atom
group, and each term is composed of the symbol for the atom
(atoms) followed by symbols for the bonds attached to that atom
(see Figure 1). The interior atoms are grouped at the front of
the notation, and terminal atoms are last. The numbering of the
atoms in the molecular structure, which determines the order
within the list of atom symbols, is a consequential component of
the similarity definition, since indels (eq 1) are enumerated with
preservation of the maximum correspondence between notation
elements. However, it is probable that any consistent numbering
system based on the molecular structure could serve as the starting
point for the similarity analysis.

The TN results are illustrated in Figures 2 and 3, in which
the compounds whose similarity parameters appear in the list of
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Table III. TN! Similarity: CBG Binding Constant Mode! (R? =
0.90)

Rum and Herndon

Table IV. Free Energy Contributions of Steroid Substituents for
Binding to Human CBG*

reg std
compd name coeff  error
constant term +26.833 4.218

19 118,17,21-trihydroxy-4-pregnene-3,20-dione  -26.104 3.218

34  2a-methyl-4-pregnene-3,20-dione +24.168 3.525
29  5-pregnene-3,20-dione -21.031 6.329
31 58-pregnane-3,20-dione +21.179 4.878
4 118,17,21-trihydroxy-2a-methyl-4- +15.264 3.973
pregnene-3,20-dione
112 118,21-dihydroxy-4-pregnene-3,20-dione +14.093 4.209
26° 17-hydroxy-l6a-methyl-4-pregnene-3,20- +7.547 4.386
dione
47 3,178-dihydroxy-1,3,5(10)-estratriene +6.808 2.865
23 17-caproxy-4-pregnene-3,20-dione -5.745 3.236
42°  17,21-dimethyl-19-norpregna-4,9- -11.864 3.786
diene-3,20-dione
122 16a,17-dihydroxy-4-pregnene-3,20-dione -13.958 3.692
18 | la-hydroxy-4-pregnene-3,20-dione -17.616 5.399
45 17B8-acetoxy-4-androsten-3-one -17.930 6.169
38 1 7-hydroxy-4-pregnen-3-one -18.989 4.330
21 1 2a-hydroxy-5-pregnane-3,20-dione -20.713 4.149

2Compound also included in the R? = 0.80 model.

regression coefficients are denoted as filled circles. The details
of the TN1 model equation (R2 = 0.90) are given in Table III
where names of compounds whose similarity indices contribute
to the model are listed in order of the values of the regression
coefficients of the multilinear model in order to facilitate analysis.
We expected that the majority of compounds included in the
correlation by the stepwise regression procedure would have either
very large or very small activities and that the size and sign of
regression coefficients would reflect activities. An examination
of Tables 1 and 111 shows that this generalization is not correct
in all cases. Exceptions are compounds 18, 45, and 47, whose
regression coefficients indicate contributions to activity not in order
of experimental magnitudes of In (10-7K,). One also notes that
several compounds which have a unique structural feature or
functional group, i.e., 23, 42, and 47, are necessary in the 80 or
90% models, while it is not necessary to involve others, notably
40 (hemiacetal) and 41 (9a-F).

1t is actually very difficult to discern single specific structural
features that are responsible for the differential activities based
on an examination of the regression equations generated by using
the similarity matrix. Perhaps this points to a weakness of this
quite abstract protocol for quantification of a structure-activity
relationship. However, the correlations are quite acceptable with
a reasonable number of parameters. The more conventional
functional group model, which will be examined below, is found
to require approximately the same number of parameters to yield
a comparable degree of acceptability, but several of the parameters
have to be evaluated using binding constant data from single
compounds.

Functional Group Model. Mickelson et al.* assigned numerical
contributions of 24 substituent groups and other structural features
for the CBG binding constants of the compounds in Table I. The
analysis was carried out by examining pairs of compounds that
differed in only one molecular structural change, and it was
necessary to use binding data32? for other than human CBG for
two of the structure descriptors. The dependent variable was taken
to be the AG® of complexation (4 °C), which is, of course, linearly
related to the In (1077K,) values. Table IV contains a list of these
substituents, their numerical values derived in the previous work,
and the statistical results for the correlation of the Table I data
using these parameters.

The substituent constants in Table IV give a very poor corre-
lation of the Table I data compared to the TN similarity ap-
proach, even though the analysis employs nine additional sub-

(32) Blanford, A. T.; Wittman, W ; Strupe, S. D.; Westphal, U. J. Steroid
Biochem. 1978, 9, 187.
(33) Mickelson, K. E.; Westphal, U. Biochemistry 1979, 18, 2685,

subst® AG® subst® AG® subst® AG®
2a-OH 404 11(C=0) +1.5 6a-CH, +1.5
3a-OH +1.6 14a-OH +24 108-CH, -1.4
35-OH +3.1 17a-OH +0.3 16a-CH, +1.2
3-(C=0) -2.7¢ 20a-OH +2.1 17a-0OAC +3.6
6a-OH +2.1 208-OH +2.6 9a-F +3.2
68-OH +2.9 20-(C=0) -3.2 12)C=C +04
lta-OH  +09 21-OH -0.1 4(5) C=C ~1.6
118-OH -0.I  2a-CH; 402  5(6)C=C +0.1¢

2 Mickelson et al.?* #See Figure |A for numbering. ©Estimated
from other types of binding data.?-32
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Figure 4. Functiona! group regression model (R? = 0.80). Closed circles
indicate parameters unique for a single compound.

stituent parameters. The reason for this result is that the sub-
stituent constants were not adjusted by any statistical procedure.
That is, the values in the table are those based on distinctive pairs
of compounds. In fact, the variables for groups that are common
to several compounds are actually excluded from the model.

In order to extend the functional group correlation model, and
to compare and evaluate its performance fairly, we carried out
a more complete analysis as follows:

(a) The fundamental steroid substructure without substituents
was considered to be 178-ethyl-108,138-dimethylcyclopentaper-
hydrophenanthrene (see Figure 1A) with trans junctions at the
B-C and C-D ring fusions (88, 9«, and 14« hydrogen atoms).

(b) In order to avoid bias as to what constitutes a functional
group, any deviation from this basic skeleton was considered to
define a group parameter. Thirty-seven functional descriptors
were identified, and a matrix of these descriptors was constructed
by assigning a value of 1.0 as an “indicator variable” if the
functional group was present; otherwise, the value 0.0 was assigned.
Nineteen of these descriptors are unique; that is, they are each
present in only a single steroid in the data set. One compound
(42, Table I) has three such unique structural features, and two
of these descriptors were eliminated from the data matrix.

(c) Stepwise linear regression with In (107K,) as the dependent
variable was then used to test this augmented functional group
model.

Standard statistical criteria allow one to obtain several ac-
ceptable multilinear relationships between the steroid CBG binding
constants (Table I) and the structural variables. Results at the
80% and 90% levels of correlation are depicted in Figures 4 and
5, and the regression coefficients of these multilinear models are
listed in Table V. .

The 90% model with eight adjustable parameters and eight
coefficients for unique functional groups is a good correlation of
the binding data by any of the statistical criteria. An interesting
aspect of the coefficient values is that they are all negative except
for the parameters representing the 4(5) CC double bond, the 118
hydroxy group, and the carbonyl groups at C-3 and C-20. Note
that the carbonyl group parameters (3.6 and 3.4 kcal) have values
that would be expected for enthalpies associated with formation
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Figure 5. Functional group regression model (R? = 0.90). Closed circles
indicate parameters unique for a single compound.

Table V. Analysis of Functional Group Modes for Human CBG
Binding

regression coeff (std error)

structural
descriptor 80% model 90% model

constant term -5.249 (0.860) -5.357 (0.663)
4(5) C=C 2.532 (0.613) 1.412 (0.648)
5a-H -2.511 (0.985)
3-(C=0) 2.030 (0.971) 3.595 (0.874)
6a-CH3 -1.580 (0.784)
6a-OH* -2.072 (1.075)
68-OH* -3.7H1 (1.397) -4.209 (1.075)
118-OH 1.329 (0.550) 0.731 (0.436)
12a-OH® -3.929 (1.2t 1)
14a-OH® -2.897 (1.397) -3.395 (1.075)
16a-OH -2.719 (1.012) -3.216 (0.784)
9a-F -6.377 (1.088) -6.277 (0.836)
18(11)-hemiacetal® -3.261 (1.075)
17-caproxy? -7.989 (1.397) -8.487 (1.075)
17a-acetoxy? -5.066 (1.397) -5.564 (1.075)
20-(C=0) 3.227 (0.522) 3.388 (0.418)
17-CH,* -3.233 (1.397) -3.731 (1.075)
no. of terms I 16

correln coeff 0.895 0.949

R? 0.802 0.900

std error 1.362 1.042

F ratio 12.854 16.968

2 Unique substituents,

of hydrogen bonds. Therefore, the results of this model may be
taken as partial support for a qualitative picture of the human
CBG steroid binding site that was derived by Mickelson et al.2¢
which involved hydrogen bonding at both extreme ends of an active
steroid molecule. However, a requirement for hydrophobic binding
at all other locations on the steroid nucleus, postulated in the
former work, is not supported by the present calculated models.
The small positive 118-OH and 4(5) CC terms and the remaining
uniformly negative larger values for both protic and nonprotic
substituents may simply indicate that steric constraints are quite
rigorous for the CBG binding process.

A deficiency of the functional group regression model is the
fact that S of 11 (80% model) or 8 or 16 (90% model) regression
coefficients in Table V are for substituents which are each present
in only a single compound. Therefore, the “predicted” values of
In (107K, for the compounds with these substituents are corrected
by the regression coefficient of the respective functional group
parameter to their exact experimental values. A reviewer has
suggested that compounds with unique substituents should be left
out of the statistical comparisons. However, our method for
defining a substituent group is more rigorous than the usual
subjective choice, and complete exclusion of compounds with
unique groups would, unacceptably, reduce the size of the data
set from 47 to 30 compounds.

Nevertheless, an evaluation along these lines can be obtained
using the statistical parameters already given in Table V. In this
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Table VI. “Predictive” Correlations of CBG Binding Data

model correln std
(R? = 0.90) coeff R? error
TN1¢ 0.673 0.453 1.994
TNI1® 0.613 0.376 2.129
functional gp 0.536 0.287 2.276
functional gp° 0.765 0.585 1.649

?Includes the similarity indices (as an independent variable) for the
compound with excluded dependent variable. See text. ?Excludes
similarity indices for excluded dependent variable. ©Excluding seven
outliers. See Figure 7 and text.

10

8t O
SR °© o0
S L @]
= 4 Op
3] ® 0
s oy
>
3 or o ©%gg
g 2t ° s o
3 I ©

- O
§ 4

-8 + o)
.

-8 -6 -4 -2 0 2 4 6 8
EXPERIMENTAL LOG(ACTIVITY)

Figure 6. Similarity model cross-validated predictions of CBG binding
affinities (with inclusion of similarity indices for excluded compounds).

case, the statistical parameters for the 80% model (5 unique
parameters out of 11 for 47 compounds) are identical to regression
statistics for an 80% correlation model for 41 compounds using
only six parameters. Similarly, a 90% model with 8 parameters
for 39 compounds is obtained after eliminating the eight com-
pounds in the table with unique groups. These results sustain the
conclusion that the correlative capabilities of the functional group
model are quite acceptable. However, the actual predictive power
of the procedure s still difficult to ascertain, based on this analysis.

Predictions of CBG Binding Affinities. The leave-out cross-
validation protocol outlined in Procedures can be applied to the
problem of evaluating the predictive capabilities of both types of
modeling procedures. Every In (107K,) value is calculated from
a regression equation derived from a set of data that excludes the
dependent variable of the compound under consideration. A 90%
model equation was obtained for each leave-out-one set, and this
equation was then used to predict the In (107K,) value for CBG
binding to the excluded compound.

The similarity analysis allows the leave-out procedure to be
implemented in two different ways, i.e., with or without the sim-
ilarity indices for the excluded structure included as one of the
possible independent variables in the optimum regression equation.
This is possible because the structure of the left-out compound
is known and available even though its activity is postulated to
be unknown. However, in the case of the functional group ap-
proach, the value of a regressor indicator variable for a particular
compound cannot be included in the regression analysis unless
the dependent variable for that compound is also used.

The statistical results for the three possible cross-validation
analyses (90% models) are summarized in Table VI. Plots of
experimental versus predicted In (1077K,) values given in Figures
6 and 7 illustrate the quality of the two types of predictive cal-
culations.

The similarity analysis leave-out procedure correlates ap-
proximately twice the fraction of the variance in the binding data
as does the functional group model. An examination of Figure
7 shows that a key reason for the relatively poor performance for
the latter model is the group of seven compounds (filled circles
in Figure 7) with experimental values of In (1077K,) that cover
a range from —6 to 0, all predicted to have values of In (107K,)
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Figure 7. Functional group model cross-validated predictions of CBG

binding affinities. Filled circles indicate poorly predicted values discussed
in the text.

between +2 and +4. Six of these compounds have a single unique
substituent, and the regression coefficient for each of these sub-
stituents is included in the original 90% functional group corre-
lation model, accounting in substantial part for the good per-
formance of that model equation. The removal of the seven
outliers from the multilinear regression equation improves R? from
0.287 t0 0.585. However, this action is tantamount to presuming
that a unique substituent obviates the use of the functional group
model for prediction. We surmise that the performance of any
model equation with a large number of unique regressors should
be tested by cross-validation before acceptance for predictive
purposes.

Concluding Remarks

We have presented some developments of novel procedures that
can be used to consider the general problem of defining molecular
similarity and have used these procedures to develop an unusual
type of structure—activity relationship involving the similarity
indices as independent variables. The methodology has been
applied to correlate data for the binding constants of steroids to
human CBG. The linear regression models obtained in this work
based on the similarity analysis concept give very good correlations
of the experimental binding data. This is a promising result since
most previous extensive studies of structure—activity relationships
in steroids have been limited to qualitative classification as active
or inactive (low or high potency), in some cases due to the
qualitative nature of the available data.’*

As one expects, the actual predictive power of the similarity
concept method is not as satisfactory as the correlative perform-
ance. However, a comparison with cross-validated predicted results
from the conventional functional group analysis of the binding
data shows that the predictive mode of the similarity model ap-
proach is considerably improved and more useful. The presence
of a large number of unique substituents in the regression equations
of the functional group model seems to be a main factor responsible

Rum and Herndon

for the degradation in the quality of true predicted values of
binding data. Additional evidence is required, but these results
indicate that a straightforward functional group model may not
be as useful as the more abstract similarity analysis in quantifying
structure—activity relationships.

A study of molecular structure relationships and steroid binding
data using a technique termed comparative molecular field analysis
(CoMFA) has recently been carried out for a set of 31 com-
pounds.*® Part of this COMFA study utilizes a subset of the CBG
binding data given in Table I, and both the correlative and pre-
dictive attributes of the TN1 similarity and the CoOMFA ap-
proaches seem to be comparable for this data. The main difference
between the two methods is that the COMFA method deals with
the molecular structure as represented by the intersections of a
preselected orientation of a three-dimensional lattice with cal-
culated steric and electrostatic fields, whereas the present similarity
analysis is based on the more simplistic molecular graph, little
more than a drawing of the structure of the molecule. Of course,
the added complexity of the CoOMFA method could prove to have
advantages, particularly in identifying new unrelated structural
types that are effective for a specific application. It is difficult
to see how the molecular graph similarity analysis could allow
extrapolation outside of a group of congenerically related com-
pounds.

The main purposes of the present work were to test concepts
and definitions of similarity based on the molecular graph notation
system and to formalize procedures to utilize the quantitative
definitions of similarity. The results are encouraging, and we
conclude that the overall similarity analysis procedure shows
promise for development as a general QSAR tool when applied
to groups of structurally related compounds. We note that this
restriction to congeneric sets applies to the majority of applications
of QSAR. Tentatively, we propose that definitions of molecular
similarity based on structural notation similarity could be used
in a laboratory environment to select promising alterations in
molecular structure for an application under consideration. This
would, of course, only be possible after a sufficient number of cases
had been previously studied to provide the starting data for
analysis. We are in the process of additional tests to establish
the generality and limitations of this approach.
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